
IBM Informix
Embedded SQLJ
User’s Guide
Version 1.01
December 2001
Part No. 000-8722

ii IBM Informix Embedd
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
ed SQLJ User’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Global Language Support 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 8
Related Manuals 8
Documentation Notes and Release Notes 9
Vendor-Specific Documentation 9

IBM Welcomes Your Comments 10

Chapter 1 Introducing IBM Informix Embedded SQLJ
In This Chapter 1-3
What Is Embedded SQLJ? 1-3
How Does Embedded SQLJ Work? 1-4
Embedded SQLJ Versus JDBC 1-5

Chapter 2 Preparing to Use Embedded SQLJ
In This Chapter 2-3
What Components Do You Need? 2-3
Setting Up Your Software 2-4
Examples . 2-4

iv IBM In
Chapter 3 Building an Embedded SQLJ Program
In This Chapter 3-3
Fundamentals of Embedded SQLJ 3-3

SQLJ Statement Identifier 3-3
Connecting to a Database 3-3
Embedding SQL Statements 3-5
Handling Result Sets 3-6

A Simple Embedded SQLJ Program 3-8

Chapter 4 The Embedded SQLJ Language
In This Chapter 4-3
Embedded SQLJ Versus Traditional Embedded SQL 4-3
Embedded SQLJ Source Files 4-4
Identifying Embedded SQLJ Statements 4-4
SQL Statements 4-5
Host Variables 4-6
SELECT Statements That Return a Single Row 4-6
Handling Result Sets 4-7

Positional Iterators 4-7
Named Iterators 4-9
Using Column Aliases 4-11
Iterator Methods 4-11
Positioned Updates and Deletes 4-12

Monitoring the Execution of an SQL Query 4-12
Calling SPL Routines and Functions 4-13
SQL and Java Type Mappings 4-14
Language Character Sets 4-16
Importing Java Packages 4-17
SQLJ Reserved Names 4-17

Parameter, Field, and Variable Names 4-17
Class Names and Filenames 4-18

Handling Errors 4-18
formix Embedded SQLJ User’s Guide

Chapter 5 Processing Embedded SQLJ Source Code
In This Chapter 5-3
Translating, Compiling, and Running Embedded SQLJ Programs . 5-3
The ifxsqlj Command 5-5
Command Options 5-6

Basic Options 5-6
Advanced Options. 5-9

Setting Options 5-12
Setting Options on the Command Line. 5-12
Supplying Options in Property Files 5-13

Online Checking 5-15
Setting the -user and -password Options 5-16
Setting the -url and -driver Options 5-16

The ifxprofp Tool 5-17

Appendix A Connecting to Databases

Appendix B Sample Programs

Appendix C Notices

Index
Table of Contents v

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Global Language Support 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Platform Icons 7

Additional Documentation 8
Related Manuals 8
Documentation Notes and Release Notes 9
Vendor-Specific Documentation 9

IBM Welcomes Your Comments 10

2 IBM In
formix Embedded SQLJ User’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual contains information about using IBM Informix Embedded SQLJ.
This section discusses the organization of the manual, the intended audience,
and the associated software products that you must have to use IBM Informix
Embedded SQLJ.

Organization of This Manual
This manual includes the following chapters:

■ Chapter 1, “Introducing Informix Embedded SQLJ,” introduces the
IBM Informix Embedded SQLJ product.

■ Chapter 2, “Preparing to Use Embedded SQLJ,” describes the
software you need to develop and run Embedded SQLJ programs
and how to set it up.

■ Chapter 3, “Building an Embedded SQLJ Program,” provides an
overview of the Embedded SQLJ language and demonstrates its use
with a simple program.

■ Chapter 4, “The Embedded SQLJ Language,” provides detailed
information about the Embedded SQLJ language.

■ Chapter 5, “Processing Embedded SQLJ Source Code,” explains how
to use the SQLJ translator and how to compile and run your
Embedded SQLJ programs.
Introduction 3

Types of Users
■ Appendix A, “Connecting to Databases,” provides background
information and further details about how an Embedded SQLJ
program connects to a database.

■ Appendix B, “Sample Programs,” provides a table describing the
sample programs included with Embedded SQLJ.

In addition, a Notices appendix provides information about IBM products.
An index follows at the end of the manual.

Types of Users
This guide is for programmers who want to write JavaTM programs that can:

■ Connect to Informix databases.

■ Issue SQL statements to manipulate data in the database.

This manual is written with the assumption that you have the following
background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Experience with the Java programming language

■ Experience working with relational databases or exposure to
database concepts

■ Experience with the SQL query language

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started manual for your database server
for a list of supplementary titles.
4 IBM Informix Embedded SQLJ User’s Guide

Software Dependencies
Software Dependencies
To run IBM Informix Embedded SQLJ programs, you must use one of the
following database servers:

■ IBM Informix Dynamic Server, Version 9.x

■ IBM Informix Dynamic Server with Universal Data Option,
Version 9.x

■ IBM Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options , Version 8.x

■ IBM Informix Dynamic Server, Version 7.x

■ IBM Informix Dynamic Server, Workgroup and Developer editions,
Version 7.x

■ IBM Informix OnLine Dynamic Server, Version 5.x

■ IBM Informix SE, Versions 5.x to 7.2x

To enable your programs to connect to the server, you must use IBM Informix
JDBC Driver, Version 2.0 or later.

You must use the JavaSoft software Java Development Kit (JDK), Version 1.2
or later, or any Java software compatible with JDK 1.2, to create your
programs. JDK 1.2 is also known as Java 2.

Global Language Support
Refer to the IBM Informix JDBC Driver Programmer’s Guide for information
about using Global Language Support (GLS) with IBM Informix JDBC Driver.
Introduction 5

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. The following
conventions are discussed:

■ Typographical conventions

■ Icon conventions

Typographical Conventions
This manual uses the following conventions to introduce new terms, describe
command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you
specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames appear in boldface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.
6 IBM Informix Embedded SQLJ User’s Guide

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by two
different types of icons:

■ Comment icons

■ Platform icons

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Platform Icons

Platform icons identify paragraphs that contain platform-specific
information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to UNIX

Identifies information that is specific to the Windows

UNIX

Windows
Introduction 7

Additional Documentation
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Additional Documentation
This section describes the following parts of the documentation set:

■ Related manuals

■ Documentation notes and release notes

■ Vendor-specific documentation

Related Manuals
The following publications provide related information about the topics
discussed in this manual:

■ IBM Informix JDBC Driver Programmer’s Guide. Your programs must
use IBM Informix JDBC Driver to connect to Informix databases.

■ The IBM Informix Guide to SQL: Tutorial, IBM Informix Guide to SQL:
Reference, and IBM Informix Guide to SQL: Syntax provide syntax and
reference information about using SQL with Informix databases.
8 IBM Informix Embedded SQLJ User’s Guide

Documentation Notes and Release Notes
Documentation Notes and Release Notes
The following online files supplement the information in this manual.

The online files are located in the following directory:

IFXJLOCATION/doc/release/sqlj

IFXJLOCATION refers to the directory where you chose to install Embedded
SQLJ.

Vendor-Specific Documentation
For more information about the Java language, refer to the JavaSoft Web site
at http://java.sun.com/.

Online File Purpose

Documentation
notes

Describe features not covered in the manual or modified since
publication.

Release notes Describe any special actions required to configure and use
IBM Informix Embedded SQLJ. This file contains information
about any known problems and their workarounds.
Introduction 9

IBM Welcomes Your Comments
IBM Welcomes Your Comments
To help us with future versions of our manuals, we want to know about any
corrections or clarifications that you would find useful. Include the following
information:

■ The name and version of your manual

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail to:

doc@informix.com

We appreciate your suggestions.
10 IBM Informix Embedded SQLJ User’s Guide

1
Chapter
Introducing IBM Informix
Embedded SQLJ
In This Chapter . 1-3

What Is Embedded SQLJ? 1-3

How Does Embedded SQLJ Work? 1-4

Embedded SQLJ Versus JDBC 1-5

1-2 IBM
 Informix Embedded SQLJ User’s Guide

In This Chapter
This chapter explains what IBM Informix Embedded SQLJ allows you to do
and provides an overview of how it works.

What Is Embedded SQLJ?
IBM Informix Embedded SQLJ enables you to embed SQL statements in your
Java programs. IBM Informix Embedded SQLJ consists of:

■ The SQLJ translator, which translates SQLJ code into Java code

■ A set of Java classes that provide runtime support for SQLJ programs

IBM Informix Embedded SQLJ includes the standard SQLJ implementation, as
defined by the SQLJ consortium, plus specific Informix extensions. The rest of
this manual refers to IBM Informix Embedded SQLJ as Embedded SQLJ. The
standard SQLJ implementation is referred to as traditional Embedded SQLJ.
Introducing IBM Informix Embedded SQLJ 1-3

How Does Embedded SQLJ Work?
How Does Embedded SQLJ Work?
When you use Embedded SQLJ, you embed SQL statements in your Java
source code. You use the SQLJ translator to convert the embedded SQL state-
ments to Java source code with calls to JDBC. JDBC is the JavaSoft specification
of a standard application programming interface (API) that allows Java
programs to access database management systems.

Finally, you use the Java compiler to compile your translated Java program
into an executable Java .class file, as shown in Figure 1-1.

When you run your program, it uses IBM Informix JDBC Driver to connect to
an Informix database, as shown in Figure 1-2.

See the IBM Informix JDBC Driver Programmer’s Guide for information about
using the IBM Informix JDBC Driver.

Figure 1-1
Translation and

Compilation of an
Embedded SQLJ

Program
Java source code
with embedded

SQL

Java source code
with calls to

JDBC

Java byte codes
with calls to

JDBCSQLJ
translator

Java
compiler

SQLJ Source Java Source Java .class file

Figure 1-2
Runtime

Architecture for
Embedded SQLJ

Programs

Java executable

JDBC Driver

Calls to JDBC Results from the database

Queries and other
SQL statements

Result sets for SELECT
statements

Database
1-4 IBM Informix Embedded SQLJ User’s Guide

Embedded SQLJ Versus JDBC
Embedded SQLJ Versus JDBC
Embedded SQLJ does not support dynamic SQL; you must use the JDBC API
if you want to use dynamic SQL. Your Embedded SQLJ program can call the
JDBC API to perform a dynamic operation (the SQLJ connection-context object
that you use to connect an Embedded SQLJ program to the database contains
a JDBC Connection object that you can use to create JDBC statement objects).

If you are using static SQL, Embedded SQLJ provides the following
advantages:

■ Default connection context. You only need to set the default
connection context once within a program; then every subsequent
Embedded SQLJ statement uses this connection context unless you
specify otherwise.

■ Reduced statement complexity. For example, you do not need to
explicitly bind each variable; Embedded SQLJ performs binding for
you. Generally, this feature allows you to create smaller programs
than with the JDBC API.

■ Compile-time syntax and semantics checking. The Embedded SQLJ
translator checks the syntax of SQL statements.

■ Compile-time type checking. The Embedded SQLJ translator and
the Java compiler check that the Java data types of arguments are
compatible with the SQL data types of the SQL operation.

■ Compile-time schema checking. You can connect to a sample
database schema during translation to check that your program uses
valid SQL statements for the tables, views, columns, stored proce-
dures, and so on in your sample.
Introducing IBM Informix Embedded SQLJ 1-5

2
Chapter
Preparing to Use Embedded
SQLJ
In This Chapter . 2-3

What Components Do You Need?. 2-3

Setting Up Your Software 2-4

Examples . 2-4

2-2 IBM
 Informix Embedded SQLJ User’s Guide

In This Chapter
This chapter describes the software you must have to develop Embedded
SQLJ programs and how to set up this software.

What Components Do You Need?
You need the following software to create and run SQLJ programs:

■ IBM Informix Embedded SQLJ

■ The JavaSoft software Java Development Kit (JDK), Version 1.2 or
later, or any Java software compatible with JDK 1.2 (also known as
Java 2)

■ IBM Informix JDBC Driver, Version 2.0 or later, to enable your
programs to connect to the database server

■ One of the following Informix database servers:

❑ IBM Informix Dynamic Server, Version 9.x

❑ IBM Informix Dynamic Server with Universal Data Option,
Version 9.x

❑ IBM Informix Dynamic Server with Advanced Decision Support
and Extended Parallel Options , Version 8.x

❑ IBM Informix Dynamic Server, Version 7.x

❑ IBM Informix Dynamic Server, Workgroup and Developer
editions, Version 7.x

❑ IBM Informix OnLine Dynamic Server, Version 5.x

❑ IBM Informix SE, Versions 5.x to 7.2x
Preparing to Use Embedded SQLJ 2-3

Setting Up Your Software
Setting Up Your Software
Before you install Embedded SQLJ, you must already have installed the
JavaSoft software Java Development Kit (JDK), Version 1.2 or later. (For more
information about the Java language, see the JavaSoft Web site at
http://java.sun.com/.)

For further information about installing and using IBM Informix JDBC Driver,
see the IBM Informix JDBC Driver Programmer’s Guide.

If you do not already have your Informix server installed, refer to the Instal-
lation Guide that accompanies that software.

Examples
IBM Informix Embedded SQLJ includes sample online programs in the
/demo/sqlj directory. The README file in this directory briefly explains what
each of the programs demonstrates and how to set up, compile, and run the
programs. The programs also enable you to verify that IBM Informix
Embedded SQLJ and IBM Informix JDBC Driver are correctly installed. The
examples in this manual are taken from these sample programs.
2-4 IBM Informix Embedded SQLJ User’s Guide

3
Chapter
Building an Embedded SQLJ
Program
In This Chapter . 3-3

Fundamentals of Embedded SQLJ 3-3
SQLJ Statement Identifier 3-3
Connecting to a Database 3-3
Embedding SQL Statements 3-5
Handling Result Sets 3-6

Positional Iterators 3-6
Named Iterators 3-6

A Simple Embedded SQLJ Program 3-8

3-2 IBM
 Informix Embedded SQLJ User’s Guide

In This Chapter
This chapter explains the fundamentals of building an Embedded SQLJ
program and includes a demonstration program.

Fundamentals of Embedded SQLJ
This chapter introduces simple Embedded SQLJ statements; see Chapter 4,
“The Embedded SQLJ Language,” for detailed information about the
language.

SQLJ Statement Identifier
Each SQLJ statement in an Embedded SQLJ program is identified by #sql at
the beginning of the statement. The SQLJ translator recognizes #sql and trans-
lates the rest of the statement into Java code using JDBC calls.

Connecting to a Database
You can use a class called ConnectionManager (located in a file in the
/demo/sqlj directory) to initiate a JDBC connection. The ConnectionManager
class uses a JDBC driver and a database URL to connect to a database.
Database URLs are described in “Database URLs” on page A-2.
Building an Embedded SQLJ Program 3-3

Connecting to a Database
To enable your Embedded SQLJ program to connect to a database, you assign
values to the following data members of the ConnectionManager class in the
file /demo/sqlj/ConnectionManager.java:

You must include the directory that contains your ConnectionManager.class
file (produced when you compile ConnectionManager.java) in your
CLASSPATH environment variable definition.

Your Embedded SQLJ program connects to the database by calling the
initContext() method of the ConnectionManager class, as follows:

ConnectionManager.initContext();

“The ConnectionManager Class” on page A-1 provides details about the
functionality of the initContext() method.

As an alternative to using the ConnectionManager class, you can write your
own input methods to read the values of user name, password, driver, and
database URL from a file or from the command line.

The connection context that you set up is the default connection context; all
#sql statements execute within this context, unless you specify a different
context. For information about using nondefault connection contexts, see
“Using Nondefault Connection Contexts” on page A-4.

UID The user name

PWD The password for the user name

DRIVER The JDBC driver

DBURL The URL for the database
3-4 IBM Informix Embedded SQLJ User’s Guide

Embedding SQL Statements
Embedding SQL Statements
Embedded SQL statements can appear anywhere that Java statements can
legally appear. SQL statements must appear within curly braces, as follows:

#sql
{
INSERT INTO customer VALUES
(101, "Ludwig", "Pauli", "All Sports Supplies",
"213 Erstwild Court", "", "Sunnyvale", "CA",
"94086", "408-789-8075"
)
};

You can use the SELECT...INTO statement to retrieve data into Java variables
(host variables). Host variables within SQL statements are designated by a
preceding colon (:). For example, the following query places values in the
variables customer_num, fname, lname, company, address1, address2, city, state,
zipcode, and phone:

#sql
{
SELECT * INTO :customer_num, :fname, :lname, :company,
:address1, :address2, :city, :state, :zipcode,
:phone
FROM customer
WHERE customer_num = 101
};

SQL statements are case insensitive and can be written in uppercase,
lowercase, or mixed-case letters. Java statements are case sensitive (and so
are host variables).

You use SELECT...INTO statements for queries that return a single record; for
queries that return multiple rows (a result set), you use an iterator object,
described in the next section.
Building an Embedded SQLJ Program 3-5

Handling Result Sets
Handling Result Sets
Embedded SQLJ uses result-set iterator objects rather than cursors to manage
result sets (cursors are used by languages such as IBM Informix ESQL/C). A
result-set iterator is a Java object from which you can retrieve the data
returned by a SELECT statement. Unlike cursors, iterator objects can be
passed as parameters to a method.

Important: Names of iterator classes must be unique within an application.

When you declare an iterator class, you specify a set of Java variables to
match the SQL columns that your SELECT statement returns. There are two
types of iterators: positional and named.

Positional Iterators

The order of declaration of the Java variables of a positional iterator must
match the order in which the SQL columns are returned. You use a
FETCH...INTO statement to retrieve data from a positional iterator.

For example, the following statement generates a positional iterator class
with five columns, called CustIter:

#sql iterator CustIter(int , String, String, String, String,
String);

This iterator can hold the result set from the following SELECT statement:

SELECT customer_num, fname, lname, address1,
address2, phone
FROM customer
3-6 IBM Informix Embedded SQLJ User’s Guide

Handling Result Sets
Named Iterators

The name of each Java variable of a named iterator must match the name of
a column returned by your SELECT statement; order is irrelevant. The
matching of SQL column name and iterator column name is case insensitive.

You use accessor methods of the same name as each iterator column to obtain
the returned data, as shown in the example in “A Simple Embedded SQLJ
Program” on page 3-8. The SQLJ translator uses the iterator column names to
create accessor methods. Iterator column names are case sensitive; therefore,
you must use the correct case when you specify an accessor method.

You cannot use the FETCH...INTO statement with named iterators.

For example, the following statement generates a named iterator class called
CustRec:

#sql iterator CustRec(
int customer_num,
String fname,
String lname ,
String company ,
String address1 ,
String address2 ,
String city ,
String state ,
String zipcode ,
String phone
);

This iterator class can hold the result set of any query that returns the
columns defined in the iterator class. The result set from the query can have
more columns than the iterator class, but the iterator class cannot have more
columns than the result set. For example, this iterator class can hold the result
set of the following query because the iterator columns include all of the
columns in the customer table:

SELECT * FROM customer
Building an Embedded SQLJ Program 3-7

A Simple Embedded SQLJ Program
A Simple Embedded SQLJ Program
This sample program, Demo03.sqlj, demonstrates the use of a named
iterator to retrieve data from a database. This simple program outlines a
standard sequence for many Embedded SQLJ programs:

1. Import necessary Java classes.

2. Declare an iterator class.

3. Define the main() method.

All Java applications have a method called main, which is the entry
point for the application (where the interpreter starts executing the
program).

4. Connect to the database.

The constructor of the application makes the connection to the data-
base by calling the initContext() method of the ConnectionManager
class.

5. Run queries.

6. Create an iterator object and populate it by running a query.

7. Handle the results.

8. Close the iterator.
3-8 IBM Informix Embedded SQLJ User’s Guide

A Simple Embedded SQLJ Program
/**
*
 *
 * IBM CORPORATION
 *
 * PROPRIETARY DATA
 *
 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF
 * IBM CORPORATION. THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN
 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED
OR
 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN
AGREEMENT
 * SIGNED BY AN OFFICER OF IBM CORPORATION.
 *
 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER
 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.
 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY
LAW.
 *
 *
 * Title: Demo03.sqlj
 *
 * Description: This demonstrates simple iterator use
 *
 *

*/
import java.sql.*;
import sqlj.runtime.*; //SQLJ runtime classes

#sql iterator CustRec(
 int customer_num,
 String fname,
 String lname ,
 String company ,
 String address1 ,
 String address2 ,
 String city ,
 String state ,
 String zipcode ,
 String phone
);

public class Demo03
{
 public static void main (String args[]) throws SQLException
 {
 Demo03 demo03 = new Demo03();
 try
 {
 demo03.runDemo();
 }
 catch (SQLException s)
 {
 System.err.println("Error running demo program: " + s);
 System.err.println("Error Code : " +
 s.getErrorCode());
Building an Embedded SQLJ Program 3-9

A Simple Embedded SQLJ Program
 System.err.println("Error Message : " +
 s.getMessage());
 }
 }

 // Initialize database connection thru Connection Manager
 Demo03()
 {
 ConnectionManager.initContext();
 }
 void runDemo() throws SQLException
 {
 drop_db();

 #sql { CREATE DATABASE demo_sqlj WITH LOG MODE ANSI };

 #sql
 {
 create table customer
 (
 customer_num serial(101),
 fname char(15),
 lname char(15),
 company char(20),
 address1 char(20),
 address2 char(20),
 city char(15),
 state char(2),
 zipcode char(5),
 phone char(18),
 primary key (customer_num)
)
 };

 // Insert 4 Records in a try block
 try
 {
 #sql
 {
 INSERT INTO customer VALUES
 (101, "Ludwig", "Pauli", "All Sports Supplies",
 "213 Erstwild Court", "", "Sunnyvale", "CA",
 "94086", "408-789-8075"
)
 };

 #sql
 {
 INSERT INTO customer VALUES
 (102, "Carole", "Sadler", "Sports Spot",
 "785 Geary St", "", "San Francisco", "CA",
 "94117", "415-822-1289"
)
 };

 #sql
 {
 INSERT INTO customer VALUES
 (103, "Philip", "Currie", "Phil's Sports",
 "654 Poplar", "P. O. Box 3498", "Palo Alto",
3-10 IBM Informix Embedded SQLJ User’s Guide

A Simple Embedded SQLJ Program
 "CA", "94303", "415-328-4543"
)
 };

 #sql
 {
 INSERT INTO customer VALUES
 (104, "Anthony", "Higgins", "Play Ball!",
 "East Shopping Cntr.", "422 Bay Road", "Redwood City",
 "CA", "94026", "415-368-1100"
)
 };

 }
 catch (SQLException e)
 {
 System.out.println("INSERT Exception: " + e + "\n");
 System.out.println("Error Code : " +
 e.getErrorCode());
 System.err.println("Error Message : " +
 e.getMessage());

 }

 System.out.println();
 System.out.println("Running demo program Demo03....");
 System.out.println();

 // Declare Iterator of type CustRec
 CustRec cust_rec;

 #sql cust_rec = { SELECT * FROM customer };

 int row_cnt = 0;
 while (cust_rec.next())
 {
 System.out.println("===================================");
 System.out.println("CUSTOMER NUMBER :" +
cust_rec.customer_num());
 System.out.println("FIRST NAME :" + cust_rec.fname());
 System.out.println("LAST NAME :" + cust_rec.lname());
 System.out.println("COMPANY :" + cust_rec.company());
 System.out.println("ADDRESS :" + cust_rec.address1()
+"\n" +
 " " + cust_rec.address2());
 System.out.println("CITY :" + cust_rec.city());
 System.out.println("STATE :" + cust_rec.state());
 System.out.println("ZIPCODE :" + cust_rec.zipcode());
 System.out.println("PHONE :" + cust_rec.phone());
 System.out.println("===================================");
 System.out.println("\n\n");
 row_cnt++;
 }
 System.out.println("Total No Of rows Selected :" + row_cnt);
 cust_rec.close() ;
 System.out.println("\n\n\n\n\n");

 drop_db();
 }
 void drop_db() throws SQLException
 {
Building an Embedded SQLJ Program 3-11

A Simple Embedded SQLJ Program
 try
 {
 #sql { drop database demo_sqlj };
 }
 catch (SQLException s) { }
 }
}

3-12 IBM Informix Embedded SQLJ User’s Guide

4
Chapter
The Embedded SQLJ Language
In This Chapter . 4-3

Embedded SQLJ Versus Traditional Embedded SQL 4-3

Embedded SQLJ Source Files 4-4

Identifying Embedded SQLJ Statements 4-4

SQL Statements . 4-5

Host Variables . 4-6

SELECT Statements That Return a Single Row 4-6

Handling Result Sets 4-7
Positional Iterators 4-7
Named Iterators 4-9
Using Column Aliases 4-11
Iterator Methods 4-11
Positioned Updates and Deletes 4-12

Monitoring the Execution of an SQL Query 4-12

Calling SPL Routines and Functions 4-13

SQL and Java Type Mappings 4-14

Language Character Sets 4-16

Importing Java Packages 4-17

4-2 IBM
SQLJ Reserved Names 4-17
Parameter, Field, and Variable Names 4-17
Class Names and Filenames 4-18

Handling Errors . 4-18
 Informix Embedded SQLJ User’s Guide

In This Chapter
This chapter provides detailed information about using the Embedded SQLJ
language. For syntax and reference information about specific statements,
refer to the IBM Informix Guide to SQL: Syntax.

Embedded SQLJ Versus Traditional Embedded SQL
Embedded SQLJ has some differences from the earlier embedded SQL
languages defined by ANSI/ISO: ESQL/C, ESQL/ADA, ESQL/FORTRAN,
ESQL/COBOL, and ESQL/PL/I. The major differences are as follows:

■ The SQL connection statement of traditional embedded SQL is
replaced by a Java connection-context object. This approach enables
Embedded SQLJ programs to open multiple database connections
simultaneously.

■ In Embedded SQLJ there is no host variable definition section
(preceded by a BEGIN DECLARE SECTION statement and terminated
by an END DECLARE SECTION statement). All legal Java variables
can be used as host variables.

■ Embedded SQLJ does not include the WHENEVER...GOTO/
CONTINUE statement, because Java has well-developed rules for
declaring and handling exceptions.

■ Embedded SQLJ uses iterator objects rather than cursors to manage
result sets. A result-set iterator is a Java object from which you can
retrieve the data returned by a SELECT statement. Unlike cursors,
iterator objects can be passed as parameters to methods.
The Embedded SQLJ Language 4-3

Embedded SQLJ Source Files
■ Embedded SQLJ supports access to data in columns of iterator objects
by name, through generated accessor methods. You can also access
this data by position using the FETCH...INTO statement, as used by
traditional embedded SQL.

■ Unlike other host languages, Java allows null data. Therefore, you do
not need to use null indicator variables with Embedded SQLJ.

■ Embedded SQLJ does not include dynamic SQL; you must use JDBC
instead.

The rest of this chapter describes how to use the Embedded SQLJ language.

Embedded SQLJ Source Files
The files containing your Embedded SQLJ source code must have the
extension .sqlj; for example, custapp.sqlj.

Identifying Embedded SQLJ Statements
To identify Embedded SQLJ statements to the SQLJ translator, each SQLJ
statement must begin with #sql. The SQLJ translator recognizes #sql and
translates the statement into Java code.
4-4 IBM Informix Embedded SQLJ User’s Guide

SQL Statements
SQL Statements
Embedded SQLJ supports SQL statements at the SQL92 Entry level, with the
following additions:

■ The EXECUTE PROCEDURE statement, for calling SPL routines and
user-defined routines

■ The EXECUTE FUNCTION statement, for calling stored functions

■ The BEGIN...END block

SQL statements must appear within curly braces, as follows:

#sql
{
create table customer
(
customer_num serial(101),
fname char(15),
lname char(15),
company char(20),
address1 char(20),
address2 char(20),
city char(15),
state char(2),
zipcode char(5),
phone char(18),
primary key (customer_num)
)
};

An SQL statement that is not enclosed within curly braces will generate a
syntax error.

SQL statements are case insensitive (unless delimited by double quotes) and
can be written in uppercase, lowercase, or mixed-case letters. Java statements
are case sensitive.
The Embedded SQLJ Language 4-5

Host Variables
Host Variables
Host variables are variables of the host language (in this case Java) that
appear within SQL statements. A host variable represents a parameter,
variable, or field and is prefixed by a colon (:), as in the following example:

#sql [ctx] { DELETE FROM customer WHERE customer_num = :cust_no };

You use the SELECT...INTO statement (as shown in this example), the
FETCH...INTO statement (described in “Positional Iterators” on page 4-7), or
an accessor method (described in “Named Iterators” on page 4-9) to retrieve
data into host variables.

SELECT Statements That Return a Single Row
You use the SELECT...INTO statement for queries that return a single record of
data. For queries that return multiple rows (called a result set) you use an
iterator object, as described in the next section, “Handling Result Sets.”

The SELECT...INTO statement includes a list of host variables in the INTO
clause to which the selected data is assigned. For example:

#sql
{
SELECT * INTO :customer_num, :fname, :lname, :company,
:address1, :address2, :city, :state, :zipcode,
:phone
FROM customer
WHERE customer_num = 101
};

The number of selected expressions must match the number of host
variables. The SQL types must be compatible with the host variable types. If
you use online checking, the SQLJ translator checks that the order, number,
and types of the SQL expressions and host variables match. For information
on how to perform online checking, see “Online Checking” on page 5-15.
4-6 IBM Informix Embedded SQLJ User’s Guide

Handling Result Sets
Handling Result Sets
Embedded SQLJ uses iterator objects to manage result sets returned by
SELECT statements. A result-set iterator is a Java object from which you can
retrieve the data returned from the database. Iterator objects can be passed as
parameters to methods and manipulated like other Java objects.

Important: Names of iterator classes must be unique within an application.

When you declare an iterator object, you specify a set of Java variables to
match the SQL columns that your SELECT statement returns. There are two
types of iterators: positional and named.

Positional Iterators
The order of declaration of the Java variables in a positional iterator must
match the order in which the SQL columns are returned.

For example, the following statement generates a positional iterator class
called CustIter with six columns:

#sql iterator CustIter(int , String, String, String, String,
String);

This iterator can hold the result set from the following SELECT statement:

SELECT customer_num, fname, lname, address1,
address2, phone
FROM customer

You run the SELECT statement and populate the iterator object with the result
set by using an Embedded SQLJ statement of the form:

#sql iterator-object = { SELECT ...};
The Embedded SQLJ Language 4-7

Positional Iterators
For example:

CustIter cust_rec;
#sql [ctx] cust_rec = { SELECT customer_num, fname, lname,
address1,
address2, phone
FROM customer
};

You retrieve data from a positional iterator into host variables using the
FETCH...INTO statement:

#sql { FETCH :cust_rec
INTO :customer_num, :fname, :lname,
:address1, :address2, :phone
};

The SQLJ translator checks that the types of the host variables in the INTO
clause of the FETCH statement match the types of the iterator columns in
corresponding positions.

The types of the SQL columns in the SELECT statement must be compatible
with the types of the iterator. These type conversions are checked at trans-
lation time if you perform online checking. For information about setting up
online checking, see “Online Checking” on page 5-15. For a listing of SQL and
Java type mappings, see “SQL and Java Type Mappings” on page 4-14.
4-8 IBM Informix Embedded SQLJ User’s Guide

Named Iterators
Named Iterators
The name of each Java variable of a named iterator must match the name of
a column returned by your SELECT statement; order is irrelevant. The
matching of SQL column names and iterator column names is case
insensitive.

For example, the following statement generates a named iterator class called
CustRec:

#sql iterator CustRec(
int customer_num,
String fname,
String lname ,
String company ,
String address1 ,
String address2 ,
String city ,
String state ,
String zipcode ,
String phone
);

This iterator can hold the result set of any query that returns the columns
defined in the iterator class. You use accessor methods of the same name as
each iterator column to obtain the returned data, as shown in the example in
“A Simple Embedded SQLJ Program” on page 3-8. The SQLJ translator uses
the iterator column names to create accessor methods. Iterator column names
are case sensitive; therefore, you must use the correct case when you specify
an accessor method.

You cannot use the FETCH...INTO statement with named iterators.
The Embedded SQLJ Language 4-9

Named Iterators
The following example illustrates the use of named iterators:

// Declare Iterator of type CustRec
CustRec cust_rec;

#sql cust_rec = { SELECT * FROM customer };

int row_cnt = 0;
while (cust_rec.next())
{
System.out.println("===================================");
System.out.println("CUSTOMER NUMBER :" + cust_rec.customer_num());
System.out.println("FIRST NAME :" + cust_rec.fname());
System.out.println("LAST NAME :" + cust_rec.lname());
System.out.println("COMPANY :" + cust_rec.company());
System.out.println("ADDRESS :" + cust_rec.address1() +"\n"
+
" " + cust_rec.address2());
System.out.println("CITY :" + cust_rec.city());
System.out.println("STATE :" + cust_rec.state());
System.out.println("ZIPCODE :" + cust_rec.zipcode());
System.out.println("PHONE :" + cust_rec.phone());
System.out.println("===================================");
System.out.println("\n\n");
row_cnt++;
}
System.out.println("Total No Of rows Selected :" + row_cnt);
cust_rec.close() ;

The next() method of the iterator object advances processing to successive
rows of the result set. It returns FALSE after it fails to find a row to retrieve.

The Java compiler detects type mismatches for the accessor methods.

The validity of the types and names of the iterator columns and their related
columns in the SELECT statement are checked at translation time if you
perform online checking. For information about setting up online checking,
see “Online Checking” on page 5-15.
4-10 IBM Informix Embedded SQLJ User’s Guide

Using Column Aliases
Using Column Aliases
When an expression returned by a SELECT statement has an SQL name that is
not a valid Java identifier, use SQL column aliases to rename them. For
example, the name Not valid for Java is acceptable as a column name in SQL,
but not as a Java identifier. You can use a column alias that has a name
acceptable as a Java identifier by using the AS clause:

SELECT "Not valid for Java" AS "Col1" FROM tablename

When you create a named iterator class for this query, you specify the column
alias name for the Java variable, as in:

#sql iterator Iterator_name (String Col1);

Iterator Methods
Both named and positional iterator objects have the following methods:

■ rowCount()

Returns the number of rows retrieved by the iterator object

■ close()

Closes the iterator; raises SQLException if the iterator is already
closed

■ isClosed()

Returns TRUE after the iterator’s close() method has been called; oth-
erwise, it returns FALSE

Positional iterators also have the endFetch() method. The endFetch() method
returns TRUE when no more rows are available.

Named iterators also have the next() method. The next() method advances
processing to successive rows of the result set. It returns FALSE after it fails to
find a row to retrieve. For an example of how to use the next() method, see
“Named Iterators” on page 4-9.
The Embedded SQLJ Language 4-11

Positioned Updates and Deletes
Positioned Updates and Deletes
To perform positioned updates and deletes in a result set, you use the WHERE
CURRENT OF clause with a host variable that contains an iterator object. For
example:

#sql { delete_statement/update_statement
WHERE CURRENT OF :iter };

At runtime, the variable :iter must contain an open iterator object that
contains a result set selected from the same table accessed by the query in
either delete_statement or update_statement. The current row of that iterator
object is deleted or updated.

Monitoring the Execution of an SQL Query
You can monitor and modify the execution of an SQL query by using the
execution context associated with it. An execution context is an instance of the
class sqlj.runtime.ExecutionContext; an execution context is associated with
each executable SQL operation in an Embedded SQLJ program.

You can supply an execution context explicitly for an SQL statement:

#sql [execCtx] {SQL_statement};

If you do not explicitly supply an execution context, the SQL statement uses
the default execution context for the connection context you are using.

If you want to supply an explicit connection context and an explicit execution
context, the SQL statement looks like this:

#sql [connCtx, execCtx] {SQL_statement };

You use the getExecutionContext() method of the connection context to
obtain that connection’s default execution context.

The execution-context object has attributes and methods that provide infor-
mation about an SQL operation and the ability to modify its execution.
4-12 IBM Informix Embedded SQLJ User’s Guide

Calling SPL Routines and Functions
For each of the following attributes, there is a method called getattribute that
reads the value of the attribute, and a method called setattribute that sets its
value. The attributes are:

Calling SPL Routines and Functions
You can call a Stored Procedure Language (SPL) procedure by using the
EXECUTE PROCEDURE statement. For example:

#sql { EXECUTE PROCEDURE proc_name(:arg_name) };

You can call a stored function by using the EXECUTE FUNCTION statement.
For example:

#sql {EXECUTE FUNCTION func_name (func_arg) into :num };

MaxRows The maximum number of rows a query can return

MaxFieldSize The maximum number of bytes that can be returned as data
for any column or output variable

QueryTimeout The number of seconds to wait for an SQL operation to com-
plete

SQLWarnings Any warnings that occurred during the last SQL operation

UpdateCount The number of rows updated, inserted, or deleted during the
last SQL operation
The Embedded SQLJ Language 4-13

SQL and Java Type Mappings
SQL and Java Type Mappings
When you retrieve data from a database into an iterator object (see “Handling
Result Sets” on page 4-7) or into a host variable, you must use Java types that
are compatible with the SQL types. The following table shows valid conver-
sions from SQL types to Java types.

SQL Type Java Type

BLOB byte[]

BOOLEAN boolean

BYTE byte[]

CHAR, CHARACTER String

CHARACTER VARYING String

CLOB byte[]

DATE java.sql.Date

DATETIME java.sql.Timestamp

DECIMAL, NUMERIC, DEC java.math.BigDecimal

FLOAT, DOUBLE PRECISION double

INT8 long

INTEGER, INT int

INTERVAL IfxIntervalDF, IfxIntervalYM1

LVARCHAR String

MONEY java.math.BigDecimal

NCHAR, NVARCHAR String

SERIAL int

SERIAL8 long

SMALLFLOAT float2

 (1 of 2)
4-14 IBM Informix Embedded SQLJ User’s Guide

SQL and Java Type Mappings
You must also use compatible Java types for host variables that are
arguments to SQL operations. This table shows valid conversions from Java
types to SQL types.

SMALLINT short

TEXT String

VARCHAR String

1 IfxIntervalYM and IfxIntervalDF are Informix extensions to JDBC 2.0.
2 This mapping is JDBC compliant. You can use IBM Informix JDBC Driver to map
SMALLFLOAT data type (via the JDBC FLOAT data type) to the Java double data
type for backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT
environment variable to 1.

Java Type SQL Type

java.math.BigDecimal DECIMAL

boolean BOOLEAN

byte[] BYTE

java.sql.Date DATE

double FLOAT1

float SMALLFLOAT

int INT

long INT8

short SMALLINT

String CHAR

java.sql.Time DATETIME

java.sql.Timestamp DATETIME

SQL Type Java Type

 (2 of 2)
The Embedded SQLJ Language 4-15

Language Character Sets
Important: Unlike other host languages (for example, C), Java allows null data.
Therefore, you do not need to use null indicator variables with Embedded SQLJ. The
Java null value is equivalent to the SQL NULL value.

Language Character Sets
Embedded SQLJ supports Java’s Unicode escape sequences. Also, if you set
your Java property file.encoding to 8859_1 (or do not set it at all), you can
use the Latin-1 character set.

To process files with a different encoding—for example, SJIS—you have the
following choices:

■ Use the Sun JDK tool native2ascii to convert the native encoded
source to a source with ASCII encoding.

■ Set file.encoding=SJIS in java.properties in the Java home
directory.

■ Invoke the SQLJ translator using the following command:
java ifxsqlj -Dfile.encoding=SJIS file.sqlj

com.informix.jdbc.IfxIntervalDF INTERVAL

com.informix.jdbc.IfxIntervalYM INTERVAL

1 This mapping is JDBC compliant. You can use IBM Informix JDBC Driver to map
the Java double data type (via the JDBC FLOAT data type) to the Informix SMALL-
FLOAT data type for backward compatibility by setting the
IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

Java Type SQL Type
4-16 IBM Informix Embedded SQLJ User’s Guide

Importing Java Packages
Importing Java Packages
Your Embedded SQLJ programs need to import the JDBC API (java.sql.*) and
SQLJ runtime (sqlj.runtime.*) packages to which they refer. The classes you
are likely to commonly use are:

■ In package java.sql for the JDBC API:

The SQLException class—includes all runtime exceptions raised by
Embedded SQLJ—and classes you explicitly use, such as
java.sql.Date, java.sql.ResultSet.

■ In package sqlj.runtime for SQLJ runtime:

SQLJ stream types (explicitly referenced): for example, Bina-
ryStream, the ConnectionContext class, and the reference
implementation of Embedded SQLJ classes (in sqlj.runtime.ref).

SQLJ Reserved Names
This section lists names reserved by the SQLJ translator. Do not use these
names in your Embedded SQLJ programming.

Parameter, Field, and Variable Names
The string __sJT is a reserved prefix for generated variable names. Do not use
this prefix for the names of:

■ Variables declared within blocks that include SQL statements

■ Parameters to methods that contain SQL statements

■ Fields in classes that contain SQL statements or whose subclasses
contain SQL statements
The Embedded SQLJ Language 4-17

Class Names and Filenames
Class Names and Filenames
Do not declare classes that conflict with the names of internal classes. Do not
create files that conflict with generated internal resource files.

The SQLJ translator creates internal classes and resource files for use by
generated code. The names of these files and classes have a prefix composed
of the name of the original input file followed by the string _SJ. For example,
if you translate a file called File1.sqlj that uses the package COM.foo, the
names of some of the internal classes produced are:

■ COM.foo.File1_SJInternalClass

■ COM.foo.File1_SJProfileKeys

■ COM.foo.File1_SJInternalClass$Inner

■ COM.foo.File1_SJProfile0

■ COM.foo.File1_SJProfile1

Generated files for these internal classes, which are created in the same
directory as the input file, File1.sqlj, are called:

■ File1_SJInternalClass.java (includes the class
COM.foo.File1_SJInternalClass$Inner)

■ File1_SJProfileKeys.java

■ File1_SJProfile0.ser

■ File1_SJProfile1.ser

Files with the .ser extension are internal resource files that contain infor-
mation about SQL operations in an .sqlj file.

Handling Errors
Some iterator and connection-context methods might raise exceptions
specified by the JDBC API SQLException class. For information about using
SQLException methods to obtain information about these errors, refer to
your JDBC API documentation.
4-18 IBM Informix Embedded SQLJ User’s Guide

5
Chapter
Processing Embedded SQLJ
Source Code
In This Chapter . 5-3

Translating, Compiling, and Running Embedded SQLJ Programs. . . 5-3

The ifxsqlj Command 5-5

Command Options 5-6
Basic Options 5-6
Advanced Options 5-9

Setting Options . 5-12
Setting Options on the Command Line 5-12
Supplying Options in Property Files 5-13

Precedence of Options 5-14
Format of Property Files 5-14

Online Checking. 5-15
Setting the -user and -password Options 5-16
Setting the -url and -driver Options 5-16

The ifxprofp Tool 5-17

5-2 IBM
 Informix Embedded SQLJ User’s Guide

In This Chapter
This chapter describes how to create executable Java programs from your
Embedded SQLJ source code. It explains:

■ How to use the SQLJ translator

■ Basic translation and compilation options

■ Advanced translation and compilation options

■ How to use property files

■ How to perform online checking

Translating, Compiling, and Running Embedded
SQLJ Programs
You use the command java ifxsqlj to create executable Java .class files from
your Embedded SQLJ source code.

When you run the java ifxsqlj command with an .sqlj source file, the source
file is processed in two stages. In the first stage, called translation, the SQLJ
translator creates a Java source file (with the extension .java). For example,
when you process a file called File1.sqlj, the SQLJ translator creates a file
called File1.java. The SQLJ translator also creates internal resource files with
the extension .ser.

In the second stage of processing, the SQLJ translator passes .java files to a
Java compiler. Compilation creates files with the extension .class; in this
example, your compiled Java program is called File1.class. An internal
resource file named profilekeys.class is also created. If your program
includes an iterator, a file called iterator_name.class is produced.
Processing Embedded SQLJ Source Code 5-3

Translating, Compiling, and Running Embedded SQLJ Programs
Tip: To perform translation only, execute the java ifxsqlj command with the
-compile option set to FALSE. For information about the -compile option, see
“Advanced Options” on page 5-9.

To create a complete application, you must include the directories that
contain the SQLJ runtime classes in sqlj.runtime.* in your CLASSPATH
environment variable definition. The SQLJ runtime files are available in
ifxsqlj.jar, the file that you installed when you first installed the Embedded
SQLJ product, as described in “Setting Up Your Software” on page 2-4.

In addition, you must include the locations of ifxtools.jar and the relevant
version of the JDK in your CLASSPATH definition. At runtime, you must also
include the location of ifxjdbc.jar; however, you do not need to include this
file location when translating or compiling your application.

You run your Embedded SQLJ program like any other Java program, by using
the Java interpreter, as follows:

java File1
5-4 IBM Informix Embedded SQLJ User’s Guide

The ifxsqlj Command
The ifxsqlj Command
You use the java ifxsqlj command to translate and compile your Embedded
SQLJ source code, as described above. You run the java ifxsqlj command at
the DOS or UNIX prompt.

The syntax of the java ifxsqlj command is as follows:

java ifxsqlj optionlist filelist

When you run the java ifxsqlj command, your CLASSPATH environment
variable must be set to include any directories that contain .class files and .ser
files the translator needs to access for type resolution of variables in your
Embedded SQLJ source code.

optionlist A set of options separated by spaces. Some options have pre-
fixes to indicate they are to be passed to utilities other than the
SQLJ translator, such as the Java compiler.

filelist A list of filenames separated by spaces: for example,
file1.sqlj file2.sqlj

You must include the absolute or relative path to the files in
filelist.

The files can have the extension .sqlj or .java. You can specify
.sqlj files together with .java files on the same command line.

If you have .sqlj and .java files that require access to code in
each other’s file, enter all of these files on the command line for
the same execution of the java ifxsqlj command.

You can use an asterisk (*) as a wildcard to specify filenames;
for example, c*.sqlj processes all files beginning with c that
have the extension .sqlj.
Processing Embedded SQLJ Source Code 5-5

Command Options
Command Options
Many options are available to customize how you run the java ifxsqlj
command:

■ Basic options are described in the next section.

■ Advanced options are described on “Advanced Options” on
page 5-9.

You can set options either on the command line or in property files. Options
set on the command line can be passed to the SQLJ translator, the Java
compiler, or the Java interpreter. Options set in property files can be passed
to the SQLJ translator or the Java compiler, but not to the Java interpreter. For
more information, see “Setting Options on the Command Line” on page 5-12
and “Supplying Options in Property Files” on page 5-13.

Basic Options
The following table lists the basic options available for use with the java
ifxsqlj command.

Option Description

-d Specifies the root output directory for generated .ser and .class files

If you do not specify this option, files are generated under the directory of the input
.sqlj file.

-dir Specifies the root output directory for generated .java files

If you do not specify this option, files are generated under the directory of the input
.sqlj file.

-encoding Specifies the GLS encoding for .sqlj and .java input files and for .java generated files

If unspecified, the setting of the file.encoding property for the Java interpreter is
used.

The -encoding option is also passed to the Java compiler.

 (1 of 3)
5-6 IBM Informix Embedded SQLJ User’s Guide

Basic Options
-help Displays option names, descriptions, and current settings

The list displays:

■ The name of the option

■ The type of the option (for example, if it is Boolean) or a selection of allowed values

■ The current value

■ A description of the option

■ Whether the property is at its default, or was set by either a property file or the
command line

No translation or compilation is performed when you specify the -help option.

-linemap Enables the mapping of line numbers between the generated .java file and the
original .sqlj file

The -linemap option is useful for debugging because it allows you to trace compi-
lation and execution errors back to your Embedded SQLJ source code.

For the -linemap option to be effective, the name of the .sqlj source code file must
match the name of the class it implements.

-props Specifies the name of the property file from which to read options

“The ifxprofp Tool” on page 5-17 explains how to use property files.

-status Displays status messages while the java ifxsqlj command is running

-version Displays the version of Embedded SQLJ you are using

No translation or compilation is performed when you specify the -version option.

Option Description

 (2 of 3)
Processing Embedded SQLJ Source Code 5-7

Basic Options
-warn Specifies a list of flags in a comma-separated string for controlling the display of
warning and information messages during translation

The flags are:

■ all/none. Turns on or off all warnings and information messages

■ null(default)/nonull. Specifies whether the translator checks nullable columns
and nullable Java variable types for conversion loss when data is transferred
between database columns and Java host variables
The translator must connect to the database for this option to be in effect.

■ precision(default)/noprecision. Specifies whether the translator checks for loss of
precision when data is transferred between database columns and Java variables
The translator must connect to the database for this option to be in effect.

■ portable(default)/noportable. Turns on or off warning messages about the porta-
bility of Embedded SQLJ statements

■ strict(default)/nostrict. Specifies whether the translator checks named iterators
against the columns returned by a SELECT statement and issues a warning for any
mismatches
The translator must connect to the database for this option to be in effect.

■ verbose(default)/noverbose. Turns on or off additional information messages
about the translation process
The translator must connect to the database for this option to be in effect.

For example, the following setting of the -warn option turns off all warnings and then
turns on the precision and nullability checks:

-warn=none,null,precision

Option Description

 (3 of 3)
5-8 IBM Informix Embedded SQLJ User’s Guide

Advanced Options
Advanced Options
The following table lists the advanced options available for use with the java
ifxsqlj command. Many of these options are for online checking, which is
discussed in “Online Checking” on page 5-15.

Option Description

-cache Turns on the caching of results from online checking
Caching saves you from unnecessary connections to the database in subsequent runs
of the translator for the same file.

Results are written to the file SQLChecker.cache in your current directory. The cache
holds serialized representations of all SQL statements that translated without errors
or warnings. The cache is cumulative and grows through successive invocations of
the translator.

You empty the cache by deleting the SQLChecker.cache file.

Caching is off by default; you turn caching on by setting the -cache option to true,
1, or on: for example, -cache=true. You turn caching off by setting the option to
false, 0, or off.

-compile Set this flag to false to disable processing of .java files by the compiler. This applies
to generated .java files and to .java files specified on the command line.

-compiler-
executable

Specifies a particular Java compiler for the java ifxsqlj command to use
If unset, the translator uses javac. If you do not specify a directory path, the java
ifxsqlj command searches for the executable according to the setting of your PATH
environment variable.

-compiler-
encoding-flag

Set this flag to false to prevent the value of the SQLJ -encoding option from being
automatically passed to the compiler.

-compiler-output-
file

If you have instructed the Java compiler to output its results to a file, use the
-compiler-output-file option to specify the filename.

-driver Specifies a list of JDBC drivers that can be used to interpret JDBC connection URLs
for online checking (see “Online Checking” on page 5-15)
You specify a class name or a comma-separated list of class names. For example,
specify Informix JDBC Driver as follows:

-driver=com.informix.jdbc.IfxDriver

 (1 of 4)
Processing Embedded SQLJ Source Code 5-9

Advanced Options
-offline Specifies a Java class to implement off-line checking
The default off-line checker class is sqlj.semantics.OfflineChecker.

Off-line checking only runs when online checking does not (either because online
checking was not enabled or because it stopped because of error). Off-line checking
verifies SQL syntax and the usage of Java types.

With off-line checking, there is no connection to the database.

-online Specifies a Java class or list of classes to implement online checking
The default online checker class is sqlj.semantics.JdbcChecker.

You can specify an online checker class for a particular connection context, as in:

-online@ctxclass2=sqlj.semantics.JdbcChecker

You must specify a user name with the -user option for online checking to occur. The
-password, -url, and -driver options must be appropriately set as well.

-password Specifies a password for the user name set with the -user option
If you specify the -user option, but not the -password option, the translator prompts
you for the password.

If you are using multiple connection contexts, the setting for -password for the
default connection context also applies to any connection context that does not have
a specific setting.

-ser2class Set this flag to true to convert the generated .ser files to .class files. This is necessary
if you are creating an applet to be run from a browser, such as Netscape 4.0, that does
not support loading a serialized object from a resource file.

The original .ser file is not saved.

Option Description

 (2 of 4)
5-10 IBM Informix Embedded SQLJ User’s Guide

Advanced Options
-url Specifies a JDBC URL for establishing a database connection for online checking (see
“Database URLs” on page A-2 and “Online Checking” on page 5-15)
The URL can include a host name, a port number, and an Informix database name.
The format is:

jdbc:informix-sqli://{<ip-address>|

<domain-name>}:<port-number>[/<dbname>]:

INFORMIXSERVER=<server-name>[;user=<username>;

password=<password>;<name>=<value>

[;<name>=<value>]...]

If you are using multiple connection contexts, the setting for -url for the default
context also applies to any connection context that does not have a specific setting.

You can specify a URL for a particular connection context, as in
-url@ctxclass2=....

Any connection context with a URL must also have a user name set for it (using the
-user option) for online checking to occur.

-user Enables online checking and specifies the user name with which the translator
connects to the database (see “Online Checking” on page 5-15)

For example, to enable online checking on the default connection context and connect
with the user name fred, use the following option:

-user=fred

If you are using multiple connection contexts, the setting for -user for the default
connection context also applies to any connection context that does not have a
specific setting.

If you want to enable online checking for the default context, but turn off online
checking for another connection—for example ctxcon2—you need to specify the -user
option twice:

-user=fred -user@ctxcon2=

To enable online checking for a particular connection context, specify that context
with the user name, as in:

-user@ctxcon3=joyce

The classes of the connection contexts you specify must all be declared in your source
code or previously compiled into a .class file.

Option Description

 (3 of 4)
Processing Embedded SQLJ Source Code 5-11

Setting Options
Setting Options
You specify options for the java ifxsqlj command either on the command line
or in a property file. Command line options are discussed in “Setting Options
on the Command Line” on page 5-12. Property files are discussed in
“Supplying Options in Property Files” on page 5-13.

For Boolean options (those that are either on or off), you can set the option
simply by specifying the option name; for example, -linemap. You can also
set the option to TRUE, as in -linemap=true. To turn off a Boolean option, you
must set it to FALSE: for example, -linemap=false. You can also set Boolean
options to yes or no, or to 1 or 0.

Setting Options on the Command Line
Options on the command line override any options set in default files. If the
same option appears more than once on the command line, the translator
uses the final (rightmost) option’s value.

Command-line option names are case sensitive.

You can attach prefixes to options to pass the option to the Java compiler or
to the Java interpreter. If you do not use a prefix, the option is passed to the
SQLJ translator.

-vm Specifies a particular Java interpreter for the java ifxsqlj command to use
You must also include the path to the interpreter. If you do not specify a particular
Java interpreter using this option, the translator uses java as a default.

The -vm option must be specified on the command line; you cannot set it in a
property file.

Option Description

 (4 of 4)
5-12 IBM Informix Embedded SQLJ User’s Guide

Supplying Options in Property Files
The prefixes are:

■ -C

Passes compiler options to the Java compiler, as shown in the follow-
ing example:

-C-classpath=/user/jdk/bin

■ -J

Passes interpreter options to the Java interpreter, as shown in the fol-
lowing example:

-J-Duser.language=ja

The options available to pass to the interpreter depend on the release
and brand of Java you are using.

Do not use the -C prefix with the -d and -encoding options; when you specify
these SQLJ translator options, they are automatically passed to the Java
compiler.

Supplying Options in Property Files
You can use property files to supply options to the java ifxsqlj command.
The default name of a property file is sqlj.properties; you can specify a
different name by using the -props option on the command line (see “Basic
Options” on page 5-6).

You cannot use a property file to specify:

■ The -props, -help, and -version basic options

■ The -vm advanced option

■ Options with the prefix -J (for passing options to the Java interpreter)
Processing Embedded SQLJ Source Code 5-13

Supplying Options in Property Files
Precedence of Options

The java ifxsqlj command checks for the existence of files called
sqlj.properties in the following directories in the following order:

1. The Java home directory

2. Your home directory

3. The current directory

The translator processes each property file it finds and overrides any previ-
ously set option if it finds a new setting for that option.

Later entries in the same property file override earlier entries.

Options on the command line override options set by property files.

If you set options on the command line or in a property file specified using
the -props option, these options override any options set in sqlj.properties
files.

Format of Property Files

In a property file, you:

■ Specify one option per line.

■ Begin a line with the symbol # to denote a comment.

Tip: The translator ignores empty lines.

The syntax for specifying options is the same as shown in “Command
Options” on page 5-6, except you replace the initial hyphen with a string
followed by a period that indicates to which utility the option is passed.

You can pass options to the SQLJ translator or the Java compiler; however,
you cannot pass options to the Java interpreter from a property file. The
strings for specifying utilities are as follows.

Precede an option with... To pass it to this utility...

sqlj. SQLJ translator

compile. Java compiler
5-14 IBM Informix Embedded SQLJ User’s Guide

Online Checking
An example property file looks like this:

Turn on online checking and specify the user to connect with
sqlj.user=joyce
sqlj.password=*******
JDBC Driver to connect with
sqlj.driver=com.informix.jdbc.IfxDriver
Database URL
sqlj.url=jdbc:<ipaddr>:<portno>/demo_isqlj:informixserver=<$INFORMIXSERVER>
Instruct the compiler to output status messages during compile
compile.verbose

Online Checking
Online checking analyzes the validity of the embedded SQL statements
against the database schema (user name, password, and database) you
specify.

Online checking performs the following operations:

■ Passes SQL data manipulation statements (DML) to the database to
verify their syntax and semantics and their validity for the database
schema

■ Checks stored procedures and functions for overloading

■ Runs the checks covered by off-line checking

Off-line checking verifies SQL syntax and usage of Java types; there is no
connection to a database for off-line checking.

To set up online checking, you use the following options with the java ifxsqlj
command or set them in a property file: -user, -password, -url, and -driver.
These options are described in “Advanced Options” on page 5-9.
Processing Embedded SQLJ Source Code 5-15

Setting the -user and -password Options
Setting the -user and -password Options
You enable online checking by setting the -user option. The -user option also
supplies the user name for the database connection to be used for checking.
You do not have to specify the same database or user name for online
checking as the application uses at runtime.

In the simplest case, you supply a user name with the -user option, and
online checking is performed using the default connection context, as in:

-user = joyce

You can supply the password for the user name by using the -password
option or by combining the password with the user name; for example,
-user = joyce/jcs123 or -user = joyce -password =jcs123.

To disable online checking on the command line, set the -user option to an
empty value (as in -user=) or omit the option entirely. To disable online
checking in a property file, comment out the line specifying sqlj.user.

To enable online checking against a nondefault connection context, you
specify the connection context with the user name in the -user option. In the
following example, the SQLJ translator connects to the database specified in
the connection-context object, conctx, using the user name fred:

-user@conctx = fred

Setting the -url and -driver Options
The -url option specifies a JDBC URL for establishing a database connection
(see “Database URLs” on page A-2).

The -driver option specifies a list of JDBC drivers that can be used to interpret
JDBC connection URLs for online checking.

Both of these options are shown in “Advanced Options” on page 5-9.
5-16 IBM Informix Embedded SQLJ User’s Guide

The ifxprofp Tool
The ifxprofp Tool
Embedded SQLJ includes the ifxprofp tool. The tool ifxprofp enables you to
print out the information stored in internal resource .ser files, for debugging
purposes. You invoke the tool as follows:

java ifxprofp filename.ser

Here is an example of the output of the ifxprofp tool:

===
printing contents of profile Demo02_SJProfile0
created 918584057644 (2/9/99 10:14 AM)
associated context is sqlj.runtime.ref.DefaultContext
profile loader is sqlj.runtime.profile.DefaultLoader@1f7f1941
contains no customizations
original source file:Demo02.sqlj
contains 8 entries
===
profile Demo02_SJProfile0 entry 0
#sql { CREATE DATABASE demo_sqlj WITH LOG MODE ANSI
 };
line number:59
PREPARED_STATEMENT executed via EXECUTE_UPDATE
role is STATEMENT
descriptor is null
contains no parameters
result set type is NO_RESULT
result set name is null
contains no result columns
===
Processing Embedded SQLJ Source Code 5-17

A
Appendix
Connecting to Databases
“Connecting to a Database” on page 3-3 describes how
Embedded SQLJ programs connect to databases. This appendix
provides background information and information about using
nondefault connection contexts.

The ConnectionManager Class
You use the ConnectionManager class to make a connection to a
database, as described in “Connecting to a Database” on
page 3-3. The ConnectionManager class has two methods:

■ newConnection()

■ initContext()

The newConnection() method creates and returns a new JDBC
Connection object using the current values of the DRIVER,
DBURL, UID, and PWD attributes. If any of the needed attributes
is null or a connection cannot be established, an error message is
printed to System.out, and the program exits.

The initContext() method returns the currently installed default
context. If the current default context is null, a new default
context instance is created and installed using a connection
obtained from a call to getConnection.

Database URLs
Database URLs
The DBURL data member of the ConnectionManager class and the value for
the -url option that you specify for online checking are database URLs. (For
information about online checking, see “Online Checking” on page 5-15.)
Database URLs specify the subprotocol (the database connectivity
mechanism), the database or server identifier, and a list of properties.

Your Embedded SQLJ program uses IBM Informix JDBC Driver to connect to
an Informix database. IBM Informix JDBC Driver supports database URLs of
the following format:

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]:
INFORMIXSERVER=server-name;[user=user;password=password]
[;name=value[;name=value]...]

In the preceding syntax:

■ Curly brackets ({}) together with vertical lines (|) denote more than
one choice of variable.

■ Italics denote a variable value.

■ Brackets ([]) denote an optional value.

■ Words or symbols not enclosed in brackets are required
(INFORMIXSERVER=, for example).

Important: Spaces are not allowed in the database URL.

The following table describes the variable parts of the database URL.

Database URL Variable Required? Description

ip-address or

domain-name

Yes The IP address or the domain name of the
computer running the Informix database
server

An example of an IP address is 123.45.67.89.

An example of a domain name is myhost.com.

port-number Yes The port number of the Informix database
server

 (1 of 2)
A-2 IBM Informix Embedded SQLJ User’s Guide

Database URLs
dbname No The name of the Informix database to which
you want to connect
If you do not specify the name of a database, a
connection is made to the Informix database
server.

server-name Yes The name of the Informix server to which you
want to connect
This is the value of the INFORMIXSERVER
environment variable.

The INFORMIXSERVER environment
variable is required in the database URL,
unless it is included in the property list.

username Yes The name of the user you want to connect to
the Informix database or database server as

password Yes The password of the user specified by username

name=value No A name-value pair that specifies a value for the
Informix environment variable contained in
the name variable, recognized by either
IBM Informix JDBC Driver or Informix
database servers
The value of name is case insensitive.

For information about environment variables
supported by IBM Informix JDBC Driver and
how to set them, refer to the IBM Informix
JDBC Driver Programmer’s Guide.

Database URL Variable Required? Description

 (2 of 2)
Connecting to Databases A-3

Using Nondefault Connection Contexts
Using Nondefault Connection Contexts
This section explains how to use nondefault connection contexts. Embedded
SQLJ uses a connection-context object to manage the connection to the
database in which you want an SQL statement to execute. You can specify
different connection-context objects for different SQL statements in the same
Embedded SQLJ program, as shown in the sample program Multi-
Connect.sqlj included in this section.

To use a nondefault connection context

1. Define the connection-context class by using an Embedded SQLJ
connection statement. The syntax of the connection statement is as
follows:

#sql [modifiers] context java_class_name;

2. Create a connection-context object for connecting to the database.

3. Specify the connection-context object in your Embedded SQLJ
statement in parentheses following the #sql string.

MultiConnect.sqlj
The sample program MultiConnect.sqlj creates two databases with two
tables, Orders and Items, and inserts two records in the Orders table with
corresponding records in the Items table. The program prints the order line
items for all the orders from both tables, which reside in different databases,
by creating separate connection contexts for each database.

modifiers A list of Java class modifiers: for example, public

java_class_name The name of the Java class of the new connection
context
A-4 IBM Informix Embedded SQLJ User’s Guide

MultiConnect.sqlj
MultiConnect.sqlj calls the methods executeSQLScript() and getConnect().
These methods are contained in demoUtil.java, which follows this program.

/**
*
 *
 * IBM CORPORATION
 *
 * PROPRIETARY DATA
 *
 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF
 * IBM CORPORATION. THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN
 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED
OR
 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN
AGREEMENT
 * SIGNED BY AN OFFICER OF IBM CORPORATION.
 *
 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER
 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.
 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY
LAW.
 *
 *
 * Title: MultiConnect.sqlj
 *
 * Description: This demonstrates usage of 2 connection contexts using
 * different URLs.
 *
 *

*/

import java.sql.*;
import java.math.*;
import java.lang.*;
import sqlj.runtime.*; //SQLJ runtime classes
import sqlj.runtime.ref.*;

/* Declare ConnectionContext classes OrdersCtx and ItemsCtx.
 * OrdersCtx is related to the orders table which is in orders_db database
 * ItemsCtx is related to the items table which is in items_db database
 * Instances of these classes are used to specify where SQL operations
 * on orders table or items table shld should execute.
 * We create the 2 databases using a default context using
ConnectionManager
 *
 * For an order (from the orders table in the orders_db database), we try
 * to query the items table(in the items_db database) for the line items
which
 * make up that order
 *
 */

#sql context OrdersCtx;
#sql context ItemsCtx;

// Declare 2 named iterators for Items and Orders
Connecting to Databases A-5

MultiConnect.sqlj
#sql iterator OrdersRec (
 Integer order_num,
 Date order_date,
 String po_num,
 Date paid_date
);

#sql iterator ItemsRec (
 Short item_num,
 int order_num,
 Short stock_num,
 String manu_code,
 Integer quantity,
 BigDecimal total_price
);

public class MultiConnect extends demoUtil
{
 private OrdersCtx o_ctx = null;
 private ItemsCtx i_ctx = null;
 private DefaultContext ctx = null;

 // The constructor sets up a default database context

 MultiConnect()
 {
 /* Initialize database connection thru Connection Manager
 * and create a default context
 */
 ctx = ConnectionManager.initContext();
 }

 public static void main (String args[]) throws SQLException
 {
 MultiConnect mc_ob = new MultiConnect();
 try
 {
 System.out.println("Running demo program MultiConnect....");
 mc_ob.runDemo();

 //Close the connection
 mc_ob.o_ctx.close() ;
 mc_ob.i_ctx.close() ;
 }
 catch (SQLException s)
 {
 System.err.println("Error running demo program: " + s);
 System.err.println("Error Code : " +
 s.getErrorCode());
 System.err.println("Error Message : " +
 s.getMessage());
 }
 }
 void runDemo() throws SQLException
 {
 // We drop the 2 databases using the default context

 drop_db();
A-6 IBM Informix Embedded SQLJ User’s Guide

MultiConnect.sqlj
 /*
 * We create the 2 databases needed for the program using the
 * default Connection Context
 */

 #sql [ctx] { CREATE DATABASE orders_db WITH LOG MODE ANSI };
 #sql [ctx] { CREATE DATABASE items_db WITH LOG MODE ANSI };
 ctx.close();

 String driver = "com.informix.jdbc.IfxDriver";
 String url = "jdbc:158.58.9.121:1527:informixserver=tulua2";
 String user = "rdtest";
 String password = "1RDSRDS";
 set_driver(driver);
 set_url(url);
 set_user(user);
 set_passwd(password);
 getConnect();

 // Create the schema and the tables by running the SQL scripts
 executeSQLScript("./schema.sql");
 conn.close();

 // We now set up the Connection context OrdersCtx
 url = "jdbc:158.58.9.121:1527/orders_db:informixserver=tulua2";
 set_url(url);
 o_ctx = new OrdersCtx(getConnect());

 /* Change the url to reflect items database
 * Here we are changing the database name
 * the machine name and the port no could also be different
 */

 url = "jdbc:158.58.9.121:1527/items_db:informixserver=tulua2";
 set_url(url);
 i_ctx = new ItemsCtx(getConnect());

 // Declare orders_rec of type OrdersRec
 OrdersRec orders_rec;

 // Using context o_ctx query orders

 #sql [o_ctx] orders_rec =
 { SELECT order_num, order_date, po_num, paid_date
 FROM orders
 };
 while (orders_rec.next())
 {
 System.out.println("================================="+
 "=====================");
 System.out.print("ORDER NUMBER:" + orders_rec.order_num() +
"\t\t");
 System.out.println("ORDER DATE:" + orders_rec.order_date());
 System.out.print("PURCHASE ORDER NUMBER:" +
 orders_rec.po_num() + "\t");
 System.out.println("PAID DATE:" + orders_rec.paid_date());
 System.out.println("================================="+
 "=====================");
 System.out.print("\n");
 int ord_no = orders_rec.order_num().intValue();
 printItemRec(fetchItemRec(ord_no)) ;
Connecting to Databases A-7

MultiConnect.sqlj
 }
 System.out.println("\n");
 }
 ItemsRec fetchItemRec(int ord_no) throws SQLException
 {

 ItemsRec items_rec;
 #sql [i_ctx] items_rec =
 { SELECT item_num, order_num, stock_num, manu_code, quantity,
 total_price
 FROM items
 WHERE order_num = :ord_no
 };
 return items_rec;
 }
 void printItemRec(ItemsRec items_rec) throws SQLException
 {
 System.out.print("ITEM NUMBER ");
 System.out.print("STOCK NUMBER ");
 System.out.print("MANUFACTURER CODE ");
 System.out.print("QUANTITY ");
 System.out.print("TOTAL PRICE ");
 System.out.println("\n---------------------------------"+
 "---------------------------------------");
 while (items_rec.next())
 {
 System.out.print(items_rec.item_num() + "\t\t");
 System.out.print(items_rec.stock_num() + "\t\t");
 System.out.print(items_rec.manu_code()+ "\t\t");
 System.out.print(items_rec.quantity() + " " + "\t\t");
 System.out.print(items_rec.total_price() + "\t\t");
 System.out.print("\n");
 }
 System.out.println("\n");

 }
 void drop_db() throws SQLException
 {
 try
 {
 #sql [ctx] { drop database orders_db };
 #sql [ctx] { drop database items_db };
 }
 catch (SQLException s) { }
 }
}

/**
*
 *
 * IBM CORPORATION
 *
 * PROPRIETARY DATA
 *
 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF
 * IBM CORPORATION THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN
 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED
OR
 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN
AGREEMENT
A-8 IBM Informix Embedded SQLJ User’s Guide

MultiConnect.sqlj
 * SIGNED BY AN OFFICER OF IBM CORPORATION.
 *
 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER
 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.
 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY
LAW.
 *
 *
 * Title: demoUtil.java
 *
 * Description: Utilities used in the demo programs
 *
 *
 *

*/

import java.io.*;
import java.util.*;
import java.lang.*;
import java.sql.*;

public class demoUtil
{
 private String driver;
 private String URL;
 private String myURL;
 private String user;
 private String passwd;
 private int count = 0;
 private int lineno = 0;
 private int errors = 0;
 private boolean end_of_file = false;
 private FileInputStream fs = null;
 private DataInputStream in = null;
 private BufferedReader br = null;
 private String line = null;
 private StringBuffer read_line = null;
 public Connection conn;

 public void executeSQLScript(String SQLscript)
 {
 try
 {
 fs = new FileInputStream(SQLscript);
 }
 catch (Exception e)
 {
 System.out.println("Script File Not Found");

 e.printStackTrace();
 }

 in = new DataInputStream(fs);
 br = new BufferedReader(new InputStreamReader(in));
 line = getNextLine();
 read_line = (line==null) ? new StringBuffer() : new
StringBuffer(line);
 while (!end_of_file)
 {
Connecting to Databases A-9

MultiConnect.sqlj
 if (line!=null && line.indexOf(’;’)==line.length()-1)
 {
 tryExecute(read_line);
 read_line = new StringBuffer();
 }
 line = getNextLine();
 if (line!=null)
 read_line.append(line).append(" ");

 }
 if (read_line!=null && read_line.length()>0)
 {
 tryExecute(read_line);
 }
 System.out.println("\n");
 }
 private boolean isComment(String s)
 {
 if (s!=null)
 s.trim();
 return (
 s==null || s.equals("")
 || (s.length()>=2 && s.substring(0,2).equals("--"))
 || (s.length()>=4 && s.substring(0,4).toUpperCase().equals(
 "REM "))
);
 }

 private String getNextLine()
 {
 String line = null;
 lineno++;

 try
 {
 line = br.readLine();
 if (line==null)
 end_of_file=true;
 }
 catch (IOException e)
 {
 line = null;
 end_of_file=true;
 }

 return ((isComment(line)) ? null : line);
 }

 private String bufferToCommand(StringBuffer sb)
 {
 String s = sb.toString().trim();

 // chop off trailing semicolon
 if (s.substring(s.length()-1,s.length()).equals(";"))
 s = s.substring(0,s.length()-1);

 return s;
 }
 private void tryExecute(StringBuffer sb)
 {
 String cmd = bufferToCommand(sb);
A-10 IBM Informix Embedded SQLJ User’s Guide

MultiConnect.sqlj
 System.out.print(".");
 System.out.flush();

 try
 {
 count++;
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(cmd);
 stmt.close();
 }
 catch (SQLException e)
 {
 errors++;
 System.out.println("SQL Error line "+lineno+":
"+e.getMessage());
 System.out.println("SQLState: " + e.getSQLState());
 System.out.println("ErrorCode: " + e.getErrorCode());
 System.out.println("Offending statement: ’"+cmd+"’");
 e.printStackTrace();
 }
 }
 public void set_driver(String driver)
 {
 this.driver = driver;
 }
 public void set_url(String url)
 {
 this.URL = url;
 }
 public void set_user(String userName)
 {
 this.user = userName;
 }
 public void set_passwd(String passwd)
 {
 this.passwd = passwd;
 }
 public void connSetup()
 {
 try
 {
 Class.forName(driver);
 }
 catch (Exception e)
 {
 System.out.println("Failed to load IBM Informix JDBC driver.");

 e.printStackTrace();
 }

myURL = URL ;
myURL = myURL + ";user=" + user + ";password=" + passwd;

 }
 public Connection getConnect()
 {

 connSetup();
 try

{
 conn = DriverManager.getConnection(myURL);
 }

catch (SQLException e)
 {
Connecting to Databases A-11

MultiConnect.sqlj
 System.out.println("Connect Error : " + e.getErrorCode());
 System.out.println("Failed to connect: " + e.toString());
 e.printStackTrace();
 }
 return conn;
 }
 public Connection getConnect(Connection i_conn)
 {
 connSetup();
 try

{
 i_conn = DriverManager.getConnection(myURL);
 }

catch (SQLException e)
 {
 System.out.println("Connect Error : " + e.getErrorCode());
 System.out.println("Failed to connect: " + e.toString());
 e.printStackTrace();
 }
 return i_conn;
 }
}

A-12 IBM Informix Embedded SQLJ User’s Guide

B
Appendix
Sample Programs
The following table lists and describes the online sample
programs that are included with IBM Informix Embedded SQLJ.

The sample programs are located in the IFXJLOCATION/
demo/sqlj directory (IFXJLOCATION refers to the directory
where you chose to install Embedded SQLJ). The README file in
the directory explains how to compile and run the programs.

Demo Program Name Description

Demo01.sqlj Demonstrates a simple connection to the
database

Demo02.sqlj Demonstrates a simple SELECT statement
and the use of host variables

Demo03.sqlj Demonstrates the use of a named iterator

Demo04.sqlj Demonstrates the use of a positional iterator

Demo05.sqlj Demonstrates interoperability between a
JDBC ResultSet object and an SQLJ iterator

Demo06.sqlj Demonstrates interoperability between a
JDBC Connection object and an SQLJ
connection-context object

C
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
C-2 IBM Informix Embedded SQLJ User’s Guide

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.
Notices C-3

Trademarks
If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
C-4 IBM Informix Embedded SQLJ User’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Accessor methods 3-7, 4-4, 4-9

B
BEGIN DECLARE SECTION

statement 4-3
BEGIN...END block 4-5
Binding of variables 1-5
Boldface type Intro-6
Boolean options 5-12

C
-C prefix 5-13
-cache option 5-9
.class files 1-4
CLASSPATH environment

variable 3-4, 5-4
close() method 4-11
Column aliases 4-11
Command options, ifxsqlj 5-6
Comment icons Intro-7
-compile option 5-9
-compiler-encoding-flag option 5-9
-compiler-executable option 5-9
-compiler-output-file option 5-9
Compiling code 5-3
Connecting to a database 3-3
Connection-context class A-4
Connection-context object A-4
ConnectionManager class 3-3, 3-8,

A-1
ConnectionManager.java file 3-4
Contact information Intro-10

Curly braces, {} 4-5
Cursors 3-6, 4-3

D
-d option 5-6
Database server names, setting in

database URLs A-3
Database servers 2-3
Database URLs 3-3, A-2
Databases, connecting to 3-3
Default connection context 1-5, 3-4
Deletes, positioned 4-12
Demo01.sqlj program B-1
Demo02.sqlj program B-1
Demo03.sqlj program 3-8, B-1
Demo04.sqlj program B-1
Demo05.sqlj program B-1
Demo06.sqlj program B-1
demoUtil.java program A-5
Dependencies, software Intro-5
-dir option 5-6
Documentation notes Intro-9
Documentation, types of Intro-8
Domain names, setting in database

URLs A-2
-driver option 5-9
Dynamic SQL 4-4

E
Embedded SQL, traditional 4-3
-encoding option 5-6
END DECLARE SECTION

statement 4-3
endFetch() method 4-11

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Environment variables Intro-6
Errors 4-18
ESQL/C 4-3
EXECUTE FUNCTION

statement 4-5, 4-13
EXECUTE PROCEDURE

statement 4-5, 4-13
Execution context 4-12

F
FETCH statement 3-6, 4-4, 4-6, 4-8
Files

ConnectionManager.java 3-4
ifxjdbc.jar 5-4
ifxsqlj.jar 5-4
ifxtools.jar 5-4
iterator_name.class 5-3
java.properties 4-16
profilekeys.class 5-3
Property files 5-13
SQLChecker.cache 5-9
sqlj.properties 5-13
.ser 5-3, 5-10, 5-17

file.encoding property 4-16, 5-6
Functions 4-13

G
getExecutionContext()

method 4-12
getMaxFieldSize() method 4-13
getMaxRows() method 4-13
getQueryTimeout() method 4-13
getSQLWarnings() method 4-13
getUpdateCount() method 4-13
GLS 5-6

H
-help option 5-7
Host variables 3-5, 4-3, 4-6

I
IBM Informix JDBC Driver 1-4, 2-3,

A-2

ifxjdbc.jar file 5-4
ifxprofp tool 5-17
ifxsqlj command 5-3
ifxsqlj.jar file 5-4
ifxtools.jar file 5-4
Important paragraphs, icon

for Intro-7
Informix database servers 2-3
INFORMIXSERVER environment

variable A-3
initContext() method 3-4, 3-8, A-1
Internal resource files 5-3
IP addresses, setting in database

URLs A-2
isClosed() method 4-11
Iterator objects 3-6, 3-8, 4-3, 4-7
iterator_name.class file 5-3

J
-J prefix 5-13
Java compiler 1-4
Java Development Kit (JDK) 2-3,

2-4
Java interpreter 5-4
Java types 4-14
java.properties file 4-16
JDBC 1-4, 1-5, 4-17, 5-9, 5-11

L
Language character sets 4-16
Latin-1 character set 4-16
Line numbers 5-7
-linemap option 5-7

M
main() method 3-8
MultiConnect.sqlj program A-4
Multiple database connections 4-3

N
Named iterators 3-6, 4-9
Name-value pairs of database

URLs A-3

native2ascii tool 4-16
newConnection() method A-1
next() method 4-10, 4-11
Nondefault connections A-4
Null data 4-4
Null indicator variables 4-16

O
Off-line checking 5-15
-offline option 5-10
Online checking 5-10
On-line checking 5-11, 5-15
-online option 5-10
Output directory 5-6

P
-password option 5-10
Passwords, setting in database

URLs A-3
PATH environment variable 5-9
Platform icons Intro-7
Port numbers, setting in database

URLs A-2
Positional iterators 3-6, 4-7
Positioned updates, deletes 4-12
Preprocessing source code 5-3
profilekeys.class file 5-3
Property files 5-13
-props option 5-7, 5-13

R
README file 2-4, B-1
Related reading Intro-8
Release notes Intro-9
Reserved names 4-17
Result sets 3-6, 4-7
Root output directory 5-6
rowCount() method 4-11
Running Embedded SQLJ

programs 5-3
2 IBM Informix Embedded SQLJ User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
S
Sample programs 2-4, 3-8, B-1
Schema checking 1-5
SELECT statement 3-6
SELECT...AS statement 4-11
SELECT...INTO statement 3-5, 4-6
Semantics checking 1-5, 5-15
.ser files 5-3, 5-10, 5-17
-ser2class option 5-10
Servers 2-3
setMaxFieldSize() method 4-13
setMaxRows() method 4-13
setQueryTimeou() method 4-13
setUpdateCount() method 4-13
__sJT prefix 4-17
Software dependencies Intro-5
Specifying environment

variables A-3
SPL routines 4-13
SQL statements 3-5
SQL types 4-14
SQL92 Entry level 4-5
SQLChecker.cache file 5-9
SQLException class 4-17
SQLException methods 4-18
SQLJ consortium 1-3
.sqlj file extension 4-4
SQLJ runtime package 4-17
SQLJ translator 1-3, 4-17, 5-3
sqlj.properties file 5-13
sqlj.semantics.JdbcChecker

class 5-10
sqlj.semantics.OfflineChecker

class 5-10
-status option 5-7
Stored functions 4-13
Syntax checking 1-5, 5-15
System requirements Intro-5

T
Tip icons Intro-7
Translating source code 5-3
Type checking 1-5, 4-8, 4-10
Type mappings 4-14

U
Unicode escape sequences 4-16
Updates, positioned 4-12
-url option 5-11
User names, setting in database

URLs A-3
-user option 5-11

V
-version option 5-7
-vm option 5-12

W
-warn option 5-8
Warning icons Intro-7
WHENEVER...GOTO/CONTINUE

statement 4-3
WHERE CURRENT OF clause 4-12
Index 3

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Global Language Support

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Platform Icons

	Additional Documentation
	Related Manuals
	Documentation Notes and Release Notes
	Vendor-Specific Documentation

	IBM Welcomes Your Comments

	Introducing IBM Informix Embedded SQLJ
	In This Chapter
	What Is Embedded SQLJ?
	How Does Embedded SQLJ Work?
	Embedded SQLJ Versus JDBC

	Preparing to Use Embedded SQLJ
	In This Chapter
	What Components Do You Need?
	Setting Up Your Software
	Examples

	Building an Embedded SQLJ Program
	In This Chapter
	Fundamentals of Embedded SQLJ
	SQLJ Statement Identifier
	Connecting to a Database
	Embedding SQL Statements
	Handling Result Sets
	Positional Iterators
	Named Iterators

	A Simple Embedded SQLJ Program

	The Embedded SQLJ Language
	In This Chapter
	Embedded SQLJ Versus Traditional Embedded SQL
	Embedded SQLJ Source Files
	Identifying Embedded SQLJ Statements
	SQL Statements
	Host Variables
	SELECT Statements That Return a Single Row
	Handling Result Sets
	Positional Iterators
	Named Iterators
	Using Column Aliases
	Iterator Methods
	Positioned Updates and Deletes

	Monitoring the Execution of an SQL Query
	Calling SPL Routines and Functions
	SQL and Java Type Mappings
	Language Character Sets
	Importing Java Packages
	SQLJ Reserved Names
	Parameter, Field, and Variable Names
	Class Names and Filenames

	Handling Errors

	Processing Embedded SQLJ Source Code
	In This Chapter
	Translating, Compiling, and Running Embedded SQLJ Programs
	The ifxsqlj Command
	Command Options
	Basic Options
	Advanced Options

	Setting Options
	Setting Options on the Command Line
	Supplying Options in Property Files
	Precedence of Options
	Format of Property Files

	Online Checking
	Setting the �user and �password Options
	Setting the �url and �driver Options

	The ifxprofp Tool

	Connecting to Databases
	Sample Programs
	Notices
	Index

